Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Transl Med ; 22(1): 384, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659083

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cells have demonstrated significant efficacy in targeting hematological malignancies, and their use continues to expand. Despite substantial efforts spent on the optimization of protocols for CAR T-cell manufacturing, critical parameters of cell culture such as pH or oxygenation are rarely actively monitored during cGMP CAR T-cell generation. A comprehensive understanding of the role that these factors play in manufacturing may help in optimizing patient-specific CAR T-cell therapy with maximum benefits and minimal toxicity. METHODS: This retrospective study examined cell culture supernatants from the manufacture of CAR T-cells for 20 patients with B-cell malignancies enrolled in a phase 1/2 clinical trial of anti-CD22 CAR T-cells. MetaFLEX was used to measure supernatant pH, oxygenation, and metabolites, and a Bio-Plex assay was used to assess protein levels. Correlations were assessed between the pH of cell culture media throughout manufacturing and cell proliferation as well as clinical outcomes. Next-generation sequencing was conducted to examine gene expression profiles of the final CAR T-cell products. RESULTS: A pH level at the lower range of normal at the beginning of the manufacturing process significantly correlated with measures of T-cell expansion and metabolism. Stable or rising pH during the manufacturing process was associated with clinical response, whereas a drop in pH was associated with non-response. CONCLUSIONS: pH has potential to serve as an informative factor in predicting CAR T-cell quality and clinical outcomes. Thus, its active monitoring during manufacturing may ensure a more effective CAR T-cell product.


Assuntos
Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Linfócitos T , Humanos , Concentração de Íons de Hidrogênio , Linfócitos T/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Proliferação de Células , Técnicas de Cultura de Células
2.
Cytotherapy ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38625071

RESUMO

With investigators looking to expand engineered T cell therapies such as CAR-T to new tumor targets and patient populations, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, how manufacturing platforms influence the final CAR-T cell product is currently unknown. We compared 4 commonly used T cell manufacturing platforms (CliniMACS Prodigy, Xuri W25 rocking platform, G-Rex gas-permeable bioreactor, static bag culture) using identical media, stimulation, culture length, and donor starting material. Selected CD4+CD8+ cells were transduced with lentiviral vector incorporating a CAR targeting FGFR4, a promising target for pediatric sarcoma. We observed significant differences in overall expansion over the 14-day culture; bag cultures had the highest capacity for expansion while the Prodigy had the lowest (481-fold versus 84-fold, respectively). Strikingly, we also observed considerable differences in the phenotype of the final product, with the Prodigy significantly enriched for CCR7+CD45RA+ naïve/stem central memory (Tn/scm)-like cells at 46% compared to bag and G-Rex with 16% and 13%, respectively. Gene expression analysis also showed that Prodigy CAR-Ts are more naïve, less cytotoxic and less exhausted than bag, G-Rex, and Xuri CAR-Ts, and pointed to differences in cell metabolism that were confirmed via metabolic assays. We hypothesized that dissolved oxygen level, which decreased substantially during the final 3 days of the Prodigy culture, may contribute to the observed differences in T cell phenotype. By culturing bag and G-Rex cultures in 1% O2 from day 5 onward, we could generate >60% Tn/scm-like cells, with longer time in hypoxia correlating with a higher percentage of Tn/scm-like cells. Intriguingly, our results suggest that oxygenation is responsible, at least in part, for observed differences in T cell phenotype among bioreactors and suggest hypoxic culture as a potential strategy prevent T cell differentiation during expansion. Ultimately, our study demonstrates that selection of bioreactor system may have profound effects not only on the capacity for expansion, but also on the differentiation state of the resulting CAR-T cells.

3.
J Transl Med ; 22(1): 181, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374090

RESUMO

The clinical application of cell therapies is becoming increasingly important for the treatment of cancer, congenital immune deficiencies, and hemoglobinopathies. These therapies have been primarily manufactured and used at academic medical centers. However, cell therapies are now increasingly being produced in centralized manufacturing facilities and shipped to medical centers for administration. Typically, these cell therapies are produced from a patient's own cells, which are the critical starting material. For these therapies to achieve their full potential, more medical centers must develop the infrastructure to collect, label, cryopreserve, test, and ship these cells to the centralized laboratories where these cell therapies are manufactured. Medical centers must also develop systems to receive, store, and infuse the finished cell therapy products. Since most cell therapies are cryopreserved for shipment and storage, medical centers using these therapies will require access to liquid nitrogen product storage tanks and develop procedures to thaw cell therapies. These services could be provided by the hospital pharmacy or transfusion service, but the latter is likely most appropriate. Another barrier to implementing these services is the variability among providers of these cell therapies in the processes related to handling cell therapies. The provision of these services by medical centers would be facilitated by establishing a national coordinating center and a network of apheresis centers to collect and cryopreserve the cells needed to begin the manufacturing process and cell therapy laboratories to store and issue the cells. In addition to organizing cell collections, the coordinating center could establish uniform practices for collecting, labeling, shipping, receiving, thawing, and infusing the cell therapy.


Assuntos
Centros Médicos Acadêmicos , Terapia Baseada em Transplante de Células e Tecidos , Humanos
4.
Mol Ther Methods Clin Dev ; 32(1): 101171, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38298420

RESUMO

Chimeric antigen receptor T cells (CART) have demonstrated curative potential for hematological malignancies, but the optimal manufacturing has not yet been determined and may differ across products. The first step, T cell selection, removes contaminating cell types that can potentially suppress T cell expansion and transduction. While positive selection of CD4/CD8 T cells after leukapheresis is often used in clinical trials, it may modulate signaling cascades downstream of these co-receptors; indeed, the addition of a CD4/CD8-positive selection step altered CD22 CART potency and toxicity in patients. While negative selection may avoid this drawback, it is virtually absent from good manufacturing practices. Here, we performed both CD4/CD8-positive and -negative clinical scale selections of mononuclear cell apheresis products and generated CD22 CARTs per our ongoing clinical trial (NCT02315612NCT02315612). While the selection process did not yield differences in CART expansion or transduction, positively selected CART exhibited a significantly higher in vitro interferon-γ and IL-2 secretion but a lower in vitro tumor killing rate. Notably, though, CD22 CART generated from both selection protocols efficiently eradicated leukemia in NSG mice, with negatively selected cells exhibiting a significant enrichment in γδ CD22 CART. Thus, our study demonstrates the importance of the initial T cell selection process in clinical CART manufacturing.

5.
Transfusion ; 64(2): 357-366, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173340

RESUMO

BACKGROUND: Healthcare center-based cell therapy laboratories (HC CTLs) evolved from solely processing hematopoietic stem cells for transplantation to manufacturing various advanced cellular therapies. With increasing interest in cellular therapy applications, off-site manufactured products are becoming more common. HC CTLs play a critical role in supporting these products by shipping out cellular starting material (CSM) for further manufacturing and/or receiving, storing, and distributing final products. The experiences and challenges encountered by a single academic HC CTL in supporting these products are presented. METHODS: All off-site manufacturing protocols supported before 2023 were reviewed. Collected data included protocol characteristics (treatment indication, product type), process logistics (shipping, receiving, storage, thawing, distribution, documentation), and product handling volumes (CSM shipping and final product infusions). RESULTS: Between 2012 and 2022, 15 off-site manufactured cellular therapy early-phase, single- and multicenter clinical trials were supported. Trials were sponsored by academic/research and commercial entities. The number of protocols supported annually increased each year, with few ending. Products included cancer immunotherapies and gene therapies. Autologous CSM was collected and shipped, while autologous and allogeneic final products were received, stored, thawed, and distributed. Process differences among protocols included CSM shipping conditions, laboratory analyses, final product thaw conditions and procedures, number of treatments, and documentation. DISCUSSION: HC CTLs must contend with several challenges in supporting off-site manufacturing protocols. As demand for cellular therapies increases, stakeholders should collaborate from the early phases of clinical trials to streamline processes and standardize procedures to increase value, improve safety, and reduce the burden on HC CTLs.


Assuntos
Células-Tronco Hematopoéticas , Laboratórios , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia , Atenção à Saúde
6.
Cytotherapy ; 26(2): 201-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38085197

RESUMO

BACKGROUND AIMS: Accurate assessment of cell viability is crucial in cellular product manufacturing, yet selecting the appropriate viability assay presents challenges due to various factors. This study compares and evaluates different viability assays on fresh and cryopreserved cellular products, including peripheral blood stem cell (PBSC) and peripheral blood mononuclear cell (PBMC) apheresis products, purified PBMCs and cultured chimeric antigen receptor and T-cell receptor-engineered T-cell products. METHODS: Viability assays, including manual Trypan Blue exclusion, flow cytometry-based assays using 7-aminoactinomycin D (7-AAD) or propidium iodide (PI) direct staining or cell surface marker staining in conjunction with 7-AAD, Cellometer (Nexcelom Bioscience LLC, Lawrence, MA, USA) Acridine Orange/PI staining and Vi-CELL BLU Cell Viability Analyzer (Beckman Coulter, Inc, Brea, CA, USA), were evaluated. A viability standard was established using live and dead cell mixtures to assess the accuracy of these assays. Furthermore, precision assessment was conducted to determine the reproducibility of the viability assays. Additionally, the viability of individual cell populations from cryopreserved PBSC and PBMC apheresis products was examined. RESULTS: All methods provided accurate viability measurements and generated consistent and reproducible viability data. The assessed viability assays were demonstrated to be reliable alternatives when evaluating the viability of fresh cellular products. However, cryopreserved products exhibited variability among the tested assays. Additionally, analyzing the viability of each subset of the cryopreserved PBSC and PBMC apheresis products revealed that T cells and granulocytes were more susceptible to the freeze-thaw process, showing decreased viability. CONCLUSIONS: The study demonstrates the importance of careful assay selection, validation and standardization, particularly for assessing the viability of cryopreserved products. Given the complexity of cellular products, choosing a fit-for-purpose viability assay is essential.


Assuntos
Leucócitos Mononucleares , Azul Tripano , Reprodutibilidade dos Testes , Sobrevivência Celular , Criopreservação/métodos , Citometria de Fluxo/métodos
7.
Blood Adv ; 8(3): 802-814, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37939262

RESUMO

ABSTRACT: New treatments are needed for relapsed and refractory CD30-expressing lymphomas. We developed a novel anti-CD30 chimeric antigen receptor (CAR), designated 5F11-28Z. Safety and feasibility of 5F11-28Z-transduced T cells (5F11-Ts) were evaluated in a phase 1 dose escalation clinical trial. Patients with CD30-expressing lymphomas received 300 mg/m2 or 500 mg/m2 of cyclophosphamide and 30 mg/m2 of fludarabine on days -5 to -3, followed by infusion of 5F11-Ts on day 0. Twenty-one patients received 5F11-T infusions. Twenty patients had classical Hodgkin lymphoma, and 1 had anaplastic large-cell lymphoma. Patients were heavily pretreated, with a median of 7 prior lines of therapy and substantial tumor burden, with a median metabolic tumor volume of 66.1 mL (range, 6.4-486.7 mL). The overall response rate was 43%; 1 patient achieved a complete remission. Median event-free survival was 13 weeks. Eleven patients had cytokine release syndrome (CRS; 52%). One patient had grade 3 CRS, and there was no grade 4/5 CRS. Neurologic toxicity was minimal. Nine patients (43%) had new-onset rashes. Two patients (9.5%) received extended courses of corticosteroids for prolonged severe rashes. Five patients (24%) had grade 3/4 cytopenias, with recovery time of ≥30 days, and 2 of these patients (9.5%) had prolonged cytopenias with courses complicated by life-threatening sepsis. The trial was halted early because of toxicity. Median peak blood CAR+ cells per µL was 26 (range, 1-513 cells per µL), but no infiltration of CAR+ cells was detected in lymph node biopsies. 5F11-Ts had low efficacy and substantial toxicities, which limit further development of 5F11-Ts. This trial was registered at www.clinicaltrials.gov as #NCT03049449.


Assuntos
Doença de Hodgkin , Linfoma Anaplásico de Células Grandes , Linfoma , Receptores de Antígenos Quiméricos , Humanos , Doença de Hodgkin/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/terapia , Linfócitos T , Receptores de Antígenos Quiméricos/uso terapêutico
8.
Mol Ther ; 32(2): 503-526, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38155568

RESUMO

Multiple myeloma (MM) is a rarely curable malignancy of plasma cells. MM expresses B cell maturation antigen (BCMA). We developed a fully human anti-BCMA chimeric antigen receptor (CAR) with a heavy-chain-only antigen-recognition domain, a 4-1BB domain, and a CD3ζ domain. The CAR was designated FHVH33-CD8BBZ. We conducted the first-in-humans clinical trial of T cells expressing FHVH33-CD8BBZ (FHVH-T). Twenty-five patients with relapsed MM were treated. The stringent complete response rate (sCR) was 52%. Median progression-free survival (PFS) was 78 weeks. Of 24 evaluable patients, 6 (25%) had a maximum cytokine-release syndrome (CRS) grade of 3; no patients had CRS of greater than grade 3. Most anti-MM activity occurred within 2-4 weeks of FHVH-T infusion as shown by decreases in the rapidly changing MM markers serum free light chains, urine light chains, and bone marrow plasma cells. Blood CAR+ cell levels peaked during the time that MM elimination was occurring, between 7 and 15 days after FHVH-T infusion. C-C chemokine receptor type 7 (CCR7) expression on infusion CD4+ FHVH-T correlated with peak blood FHVH-T levels. Single-cell RNA sequencing revealed a shift toward more differentiated FHVH-T after infusion. Anti-CAR antibody responses were detected in 4 of 12 patients assessed. FHVH-T has powerful, rapid, and durable anti-MM activity.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Imunoterapia Adotiva , Medula Óssea/metabolismo
9.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686058

RESUMO

Adoptive transfer of cultured BMSCs was shown to be immune-suppressive in various inflammatory settings. Many factors play a role in the process, but no master regulator of BMSC-driven immunomodulation was identified. Consequently, an assay that might predict BMSC product efficacy is still unavailable. Below, we show that BMSC donor variability can be monitored by IL-10 production of monocytes/macrophages using THP-1 cells (immortalized monocytic leukemia cells) co-cultured with BMSCs. Using a mixed lymphocyte reaction (MLR) assay, we also compared the ability of the different donor BMSCs to suppress T-cell proliferation, another measure of their immune-suppressive ability. We found that the BMSCs from a donor that induced the most IL-10 production were also the most efficient in suppressing T-cell proliferation. Transcriptome studies showed that the most potent BMSC batch also had higher expression of several known key immunomodulatory molecules such as hepatocyte growth factor (HGF), PDL1, and numerous members of the PGE2 pathway, including PTGS1 and TLR4. Multiplex ELISA experiments revealed higher expression of HGF and IL6 by the most potent BMSC donor. Based on these findings, we propose that THP-1 cells may be used to assess BMSC immunosuppressive activity as a product characterization assay.


Assuntos
Medula Óssea , Leucemia Monocítica Aguda , Humanos , Projetos Piloto , Interleucina-10 , Linhagem Celular , Células Estromais
10.
Cancer Cell ; 41(10): 1689-1695, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37714150

RESUMO

Successful implementation of adoptive cell therapy (ACT) of cancer requires comprehensively addressing biological and practical challenges. This approach has been largely overlooked, resulting in a gap between the potential of ACT and its actual effectiveness. We summarize the most promising technical strategies in creating an "ideal" ACT product, focusing on chimeric antigen receptor (CAR)-engineered cells. Since many requirements for effective ACT are common to most cancers, what we outline here might have a broader impact.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética
11.
Cell Rep Methods ; 3(4): 100460, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159663

RESUMO

Although the differentiation of human induced pluripotent stem cells (hiPSCs) into various types of blood cells has been well established, approaches for clinical-scale production of multipotent hematopoietic progenitor cells (HPCs) remain challenging. We found that hiPSCs cocultured with stromal cells as spheroids (hematopoietic spheroids [Hp-spheroids]) can grow in a stirred bioreactor and develop into yolk sac-like organoids without the addition of exogenous factors. Hp-spheroid-induced organoids recapitulated a yolk sac-characteristic cellular complement and structures as well as the functional ability to generate HPCs with lympho-myeloid potential. Moreover, sequential hemato-vascular ontogenesis could also be observed during organoid formation. We demonstrated that organoid-induced HPCs can be differentiated into erythroid cells, macrophages, and T lymphocytes with current maturation protocols. Notably, the Hp-spheroid system can be performed in an autologous and xeno-free manner, thereby improving the feasibility of bulk production of hiPSC-derived HPCs in clinical, therapeutic contexts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Saco Vitelino , Células-Tronco Hematopoéticas , Organoides , Atividades Cotidianas
12.
Transfusion ; 63(4): 774-781, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975826

RESUMO

BACKGROUND: Since the beginning of the COVID-19 pandemic, cryopreservation of hematopoietic progenitor cell (HPC) products has been increasingly used to ensure allogeneic donor graft availability prior to recipient conditioning for transplantation. However, in addition to variables such as graft transport duration and storage conditions, the cryopreservation process itself may adversely affect graft quality. Furthermore, the optimal methods to assess graft quality have not yet been determined. STUDY DESIGN AND METHODS: A retrospective review was performed on all cryopreserved HPCs processed and thawed at our facility from 2007 to 2020, including both those collected onsite and by the National Marrow Donor Program (NMDP). HPC viability studies were also performed on fresh products, retention vials, and corresponding final thawed products by staining for 7-AAD (flow cytometry), AO/PI (Cellometer), and trypan blue (manual microscopy). Comparisons were made using the Mann-Whitney test. RESULTS: For HPC products collected by apheresis (HPC(A)), pre-cryopreservation and post-thaw viabilities, as well as total nucleated cell recoveries were lower for products collected by the NMDP compared to those collected onsite. However, there were no differences seen in CD34+ cell recoveries. Greater variation in viability testing was observed using image-based assays compared to flow-based assays, and on cryo-thawed versus fresh samples. No significant differences were observed between viability measurements obtained on retention vials versus corresponding final thawed product bags. DISCUSSION: Our studies suggest extended transport may contribute to lower post-thaw viabilities, but without affecting CD34+ cell recoveries. To assess HPC viability prior to thaw, testing of retention vials offers predictive utility, particularly when automated analyzers are used.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Pandemias , Células-Tronco Hematopoéticas , Criopreservação/métodos , Antígenos CD34 , Sobrevivência Celular
13.
Cytotherapy ; 25(6): 598-604, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36935289

RESUMO

BACKGROUND AIMS: Reference genes are an essential part of clinical assays such as droplet digital polymerase chain reaction (ddPCR), which measure the number of copies of vector integrated into genetically engineered cells and the loss of plasmids in reprogrammed cells used in clinical cell therapies. Care should be taken to select reference genes, because it has been discovered that there may be thousands of variations in copy number from genomic segments among different individuals. In addition, within the same person in the context of cancer and other proliferative disorders, substantial parts of the genome also can differ in copy number between cells from diseased and healthy people. The purpose of this study was to identify reference genes that could be used for copy number variation analysis of transduced chimeric antigen receptor T cells and for plasmid loss analysis in induced pluripotent stem cells using ddPCR. METHODS: We used The Cancer Genome Atlas (TCGA) to evaluate candidate reference genes. If TCGA found a candidate gene to have low copy number variance in cancer, ddPCR was used to measure the copy numbers of the potential reference gene in cells from healthy subjects, cancer cell lines and patients with acute lymphocytic leukemia, lymphoma, multiple myeloma and human papillomavirus-associated cancers. RESULTS: In addition to the rPP30 gene, which we have has been using in our copy number assays, three other candidate reference genes were evaluated using TCGA, and this analysis found that none of the four gene regions (AGO1, AP3B1, MKL2 and rPP30) were amplified or deleted in all of the cancer cell types that are currently being treated with cellular therapies by our facility. The number of copies of the genes AP3B1, AGO1, rPP30 and MKL2 measured by ddPCR was similar among cells from healthy subjects. We found that AGO1 had copy number alteration in some of the clinical samples, and the number of copies of the genes AP3B1, MKL2 and rPP30 measured by ddPCR was similar among cells from patients with the cancer cell types that are currently being treated with genetically engineered T-cell therapies by our facility. CONCLUSIONS: Based on our current results, the three genes, AP3B1, MKL2 and rPP30, are suitable for use as reference genes for assays measuring vector copy number in chimeric antigen receptor T cells produced from patients with acute leukemia, lymphoma, multiple myeloma and human papillomavirus-associated cancers. We will continue to evaluate AGO1 on our future samples.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Variações do Número de Cópias de DNA/genética , Receptores de Antígenos Quiméricos/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Linfócitos T , Reação em Cadeia da Polimerase/métodos
15.
Cytotherapy ; 25(4): 442-450, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710226

RESUMO

BACKGROUND AIMS: Hematopoietic stem cell transplantation using bone marrow as the graft source is a common treatment for hematopoietic malignancies and disorders. For allogeneic transplants, processing of bone marrow requires the depletion of ABO-mismatched red blood cells (RBCs) to avoid transfusion reactions. Here the authors tested the use of an automated closed system for depleting RBCs from bone marrow and compared the results to a semi-automated platform that is more commonly used in transplant centers today. The authors found that fully automated processing using the Sepax instrument (Cytiva, Marlborough, MA, USA) resulted in depletion of RBCs and total mononuclear cell recovery that were comparable to that achieved with the COBE 2991 (Terumo BCT, Lakewood, CO, USA) semi-automated process. METHODS: The authors optimized the fully automated and closed Sepax SmartRedux (Cytiva) protocol. Three reduction folds (10×, 12× and 15×) were tested on the Sepax. Each run was compared with the standard processing performed in the authors' center on the COBE 2991. Given that bone marrow is difficult to acquire for these purposes, the authors opted to create a surrogate that is more easily obtainable, which consisted of cryopreserved peripheral blood stem cells that were thawed and mixed with RBCs and supplemented with Plasma-Lyte A (Baxter, Deerfield, IL, USA) and 4% human serum albumin (Baxalta, Westlake Village, CA, USA). This "bone marrow-like" product was split into two starting products of approximately 600 mL, and these were loaded onto the COBE and Sepax for direct comparison testing. Samples were taken from the final products for cell counts and flow cytometry. The authors also tested a 10× Sepax reduction using human bone marrow supplemented with human liquid plasma and RBCs. RESULTS: RBC reduction increased as the Sepax reduction rate increased, with an average of 86.06% (range of 70.85-96.39%) in the 10×, 98.80% (range of 98.1-99.5%) in the 12× and 98.89% (range of 98.80-98.89%) in the 15×. The reduction rate on the COBE ranged an average of 69.0-93.15%. However, white blood cell (WBC) recovery decreased as the Sepax reduction rate increased, with an average of 47.65% (range of 38.9-62.35%) in the 10×, 14.56% (range of 14.34-14.78%) in the 12× and 27.97% (range of 24.7-31.23%) in the 15×. COBE WBC recovery ranged an average of 53.17-76.12%. Testing a supplemented human bone marrow sample using a 10× Sepax reduction resulted in an average RBC reduction of 84.22% (range of 84.0-84.36%) and WBC recovery of 43.37% (range of 37.48-49.26%). Flow cytometry analysis also showed that 10× Sepax reduction resulted in higher purity and better recovery of CD34+, CD3+ and CD19+ cells compared with 12× and 15× reduction. Therefore, a 10× reduction rate was selected for the Sepax process. CONCLUSIONS: The fully automated and closed SmartRedux program on the Sepax was shown to be effective at reducing RBCs from "bone marrow-like" products and a supplemented bone marrow product using a 10× reduction rate.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Humanos , Eritrócitos , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Medula Óssea , Citometria de Fluxo
16.
Clin Cancer Res ; 29(2): 349-363, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36099324

RESUMO

PURPOSE: Ovarian cancer is the most lethal gynecologic cancer and intrinsically resistant to checkpoint immunotherapies. We sought to augment innate immunity, building on previous work with IFNs and monocytes. PATIENTS AND METHODS: Preclinical experiments were designed to define the mechanisms of cancer cell death mediated by the combination of IFNs α and γ with monocytes. We translated these preclinical findings into a phase I trial of autologous IFN-activated monocytes administered intraperitoneally to platinum-resistant or -refractory ovarian cancer patients. RESULTS: IFN-treated monocytes induced caspase 8-dependent apoptosis by the proapoptotic TRAIL and mediated by the death receptors 4 and 5 (DR4 and DR5, respectively) on cancer cells. Therapy was well tolerated with evidence of clinical activity, as 2 of 9 evaluable patients had a partial response by RECIST criteria, and 1 additional patient had a CA-125 response. Upregulation of monocyte-produced TRAIL and cytokines was confirmed in peripheral blood. Long-term responders had alterations in innate and adaptive immune compartments. CONCLUSIONS: Given the mechanism of cancer cell death, and the acceptable tolerability of the clinical regimen, this platform presents a possibility for future combination therapies to augment anticancer immunity. See related commentary by Chow and Dorigo, p. 299.


Assuntos
Monócitos , Neoplasias Ovarianas , Humanos , Feminino , Monócitos/metabolismo , Apoptose , Interferon-alfa/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Imunoterapia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
17.
J Transl Med ; 20(1): 587, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510222

RESUMO

BACKGROUND: SARS-CoV2 can induce a strong host immune response. Many studies have evaluated antibody response following SARS-CoV2 infections. This study investigated the immune response and T cell receptor diversity in people who had recovered from SARS-CoV2 infection (COVID-19). METHODS: Using the nCounter platform, we compared transcriptomic profiles of 162 COVID-19 convalescent donors (CCD) and 40 healthy donors (HD). 69 of the 162 CCDs had two or more time points sampled. RESULTS: After eliminating the effects of demographic factors, we found extensive differential gene expression up to 241 days into the convalescent period. The differentially expressed genes were involved in several pathways, including virus-host interaction, interleukin and JAK-STAT signaling, T-cell co-stimulation, and immune exhaustion. A subset of 21 CCD samples was found to be highly "perturbed," characterized by overexpression of PLAU, IL1B, NFKB1, PLEK, LCP2, IRF3, MTOR, IL18BP, RACK1, TGFB1, and others. In addition, one of the clusters, P1 (n = 8) CCD samples, showed enhanced TCR diversity in 7 VJ pairs (TRAV9.1_TCRVA_014.1, TRBV6.8_TCRVB_016.1, TRAV7_TCRVA_008.1, TRGV9_ENST00000444775.1, TRAV18_TCRVA_026.1, TRGV4_ENST00000390345.1, TRAV11_TCRVA_017.1). Multiplexed cytokine analysis revealed anomalies in SCF, SCGF-b, and MCP-1 expression in this subset. CONCLUSIONS: Persistent alterations in inflammatory pathways and T-cell activation/exhaustion markers for months after active infection may help shed light on the pathophysiology of a prolonged post-viral syndrome observed following recovery from COVID-19 infection. Future studies may inform the ability to identify druggable targets involving these pathways to mitigate the long-term effects of COVID-19 infection. TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT04360278 Registered April 24, 2020.


Assuntos
COVID-19 , Humanos , Anticorpos Antivirais , Citocinas , Imunização Passiva , RNA Viral , SARS-CoV-2
18.
J Transl Med ; 20(1): 514, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348415

RESUMO

BACKGROUND: Clinical CAR T-cell therapy using integrating vector systems represents a promising approach for the treatment of hematological malignancies. Lentiviral and γ-retroviral vectors are the most commonly used vectors in the manufacturing process. However, the integration pattern of these viral vectors and subsequent effect on CAR T-cell products is still unclear. METHODS: We used a modified viral integration sites analysis (VISA) pipeline to evaluate viral integration events around the whole genome in pre-infusion CAR T-cell products. We compared the differences of integration pattern between lentiviral and γ-retroviral products. We also explored whether the integration sites correlated with clinical outcomes. RESULTS: We found that γ-retroviral vectors were more likely to insert than lentiviral vectors into promoter, untranslated, and exon regions, while lentiviral vector integration sites were more likely to occur in intron and intergenic regions. Some integration events affected gene expression at the transcriptional and post-transcriptional level. Moreover, γ-retroviral vectors showed a stronger impact on the host transcriptome. Analysis of individuals with different clinical outcomes revealed genes with differential enrichment of integration events. These genes may affect biological functions by interrupting amino acid sequences and generating abnormal proteins, instead of by affecting mRNA expression. These results suggest that vector integration is associated with CAR T-cell efficacy and clinical responses. CONCLUSION: We found differences in integration patterns, insertion hotspots and effects on gene expression vary between lentiviral and γ-retroviral vectors used in CAR T-cell products and established a foundation upon which we can conduct further analyses.


Assuntos
Lentivirus , Retroviridae , Humanos , Lentivirus/genética , Retroviridae/genética , Vetores Genéticos , Integração Viral , Linfócitos T , DNA
19.
J Transl Med ; 20(1): 338, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902861

RESUMO

BACKGROUND: Cytokine release syndrome (CRS) is a strong immune system response that can occur as a result of the reaction of a cellular immunotherapy with malignant cells. While the frequency and management of CRS in CAR T-cell therapy has been well documented, there is emerging interest in pre-emptive treatment to reduce CRS severity and improve overall outcomes. Accordingly, identification of genomic determinants that contribute to cytokine release may lead to the development of targeted therapies to prevent or abrogate the severity of CRS. METHODS: Forty three clinical CD22 CAR T-cell products were collected for RNA extraction. 100 ng of mRNA was used for Nanostring assay analysis which is based on the nCounter platform. Several public datasets were used for validation purposes. RESULTS: We found the expression of the PFKFB4 gene and glycolytic pathway activity were upregulated in CD22 CAR T-cells given to patients who developed CRS compared to those who did not experience CRS. Moreover, these results were further validated in cohorts with COVID-19, influenza infections and autoimmune diseases, and in tumor tissues. The findings were similar, except that glycolytic pathway activity was not increased in patients with influenza infections and systemic lupus erythematosus (SLE). CONCLUSION: Our data strongly suggests that PFKFB4 acts as a driving factor in mediating cytokine release in vivo by regulating glycolytic activity. Our results suggest that it would beneficial to develop drugs targeting PFKFB4 and the glycolytic pathway for the treatment of CRS.


Assuntos
COVID-19 , Influenza Humana , COVID-19/terapia , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Genômica , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Fosfofrutoquinase-2 , Receptores de Antígenos Quiméricos
20.
Int Rev Immunol ; 41(6): 638-648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486592

RESUMO

Engineered T cell therapies such as CAR-T cells and TCR-T cells have generated impressive patient responses in previously incurable diseases. In the past few years there have been a number of technical innovations that enable robust clinical manufacturing in functionally closed and often automated systems. Here we describe the latest technology used to manufacture CAR- and TCR-engineered T cells in the clinic, including cell purification, transduction/transfection, expansion and harvest. To help compare the different systems available, we present three case studies of engineered T cells manufactured for phase I clinical trials at the NIH Clinical Center (CD30 CAR-T cells for lymphoma, CD19/CD22 bispecific CAR-T cells for B cell malignancies, and E7 TCR T cells for human papilloma virus-associated cancers). Continued improvement in cell manufacturing technology will help enable world-wide implementation of engineered T cell therapies.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva , Linfócitos T , Neoplasias/terapia , Linfócitos B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA